RADICALES

<u>Definición</u>: Definimos raíz n-ésima de a de la siguiente forma: $\sqrt[n]{a} = b \Leftrightarrow b^n = a$

En la definición anterior a la expresión $\sqrt[n]{a}$ se le llama radical, a n se llama índice, a $\sqrt{\ }$ signo radical y a "a"radicando.

<u>Definición</u>(Potencias de exponente fraccionario):Una potencia de exponente fraccionario es igual al un radical donde: el denominador de la fracción es el índice del radical, y el numerador es el exponente del radicando.

Por lo tanto:
$$a^{m/n} = \sqrt[n]{a^m}$$

Propiedades de los radicales

$$1^{\mathbf{a}} \cdot \sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}$$

$$2^{a} - \sqrt[n]{a} : \sqrt[n]{b} = \sqrt[n]{a : b}$$

$$3^{\mathbf{a}} \cdot - \left(\sqrt[n]{a}\right)^m = \sqrt[n]{a^m}$$

$$4^{a}.-\sqrt[m]{\sqrt[n]{a}}=\sqrt[m\cdot n]{a}$$

$$5^{\text{a}}$$
.- $\sqrt[n-p]{a^{m \cdot p}} = \sqrt[n]{a^m}$

Operaciones con radicales:

<u>Definición</u>: Dos radicales son semejantes o equivalentes si tienen las mismas raíces.

<u>SUMA y RESTA</u>: Para sumar o restar raíces tendremos que comprobar que el radicando y el índice de la raíz con las que queremos operar son exactamente iguales(son semejantes o equivalentes); de no ser así, no podremos sumarlas. Una vez comprobado esto sumaremos o restaremos los números que acompañan a la raíz:

Ejemplo: a)
$$\sqrt[3]{2} + 6\sqrt[3]{2} - 4\sqrt[3]{2} = 3\sqrt[3]{2}$$

b) $\sqrt[4]{4} + \sqrt[3]{4}$ no se pueden sumar.

<u>MULTIPLICACIÓN:</u>

- A) Si los índices de las raíces son iguales, multiplicaremos los radicandos.
- B) Si los índices son distintos, habrá que hallar el índice común para dividirlo por el índice de cada raíz y el resultado habrá que aplicarlo como exponente de los radicandos.

Ejemplo: a)
$$\sqrt{2} \cdot \sqrt{6} = \sqrt{12}$$

b) $\sqrt{2} \cdot \sqrt[3]{3} = \sqrt[6]{2^3 \cdot 3^2} = \sqrt[6]{72}$

<u>DIVISIÓN</u> (Racionalización):

- A) Si el denominador es un única raíz, tendremos que multiplicar al numerador y al denominador por una raíz que consiga eliminar la raíz del denominador.
- B) Si el denominador es la suma / resta de una raíz con un número real o con otra raíz, se tendrá que multiplicar por su conjugado.

Ejemplo: a)
$$\frac{3 \cdot \sqrt{2}}{\sqrt{3}} = \frac{3 \cdot \sqrt{2} \cdot \sqrt{3}}{\sqrt{3} \cdot \sqrt{3}} = \frac{3 \cdot \sqrt{6}}{3} = \sqrt{6}$$

b) $\frac{2}{2 + \sqrt{2}} = \frac{2 \cdot (2 - \sqrt{2})}{(2 + \sqrt{2}) \cdot (2 - \sqrt{2})} = \frac{2 \cdot (2 - \sqrt{2})}{4 - 2} = \frac{2 \cdot (2 - \sqrt{2})}{2} = 2 - \sqrt{2}$

1.- Realizar las siguientes operaciones simplificando al máximo:

a)
$$\left(\frac{1}{2}\right)^{\frac{3}{4}} : \left(\frac{1}{2}\right)^{\frac{2}{7}}$$

b)
$$\left(\frac{4}{6}\right)^{\frac{1}{3}} : \left(\frac{4}{6}\right)^{\frac{1}{2}}$$

c)
$$\left(a^{-1/2} \cdot b^{-1/3}\right)^{-3} \cdot \left(a^{1/2}b^{1/2}\right)^{-1}$$

d)
$$\frac{\frac{a^{\frac{1}{2}}a^{\frac{1}{3}}}{1:a^{\frac{1}{4}}}}{\frac{a^{\frac{1}{3}}a^{\frac{1}{2}}}{a^{\frac{1}{2}}:a^{\frac{1}{3}}}}:\frac{\frac{a^{\frac{1}{2}}}{a^{\frac{1}{4}}a^{\frac{1}{2}}}}{\frac{a^{\frac{1}{3}}a^{\frac{1}{2}}}{a^{\frac{1}{2}}:a^{\frac{1}{3}}}}$$

Sol: a)
$$2^{-13/28}$$
; b) $\left(\frac{2}{3}\right)^{-1/6} = \left(\frac{3}{2}\right)^{1/6}$; c) $a\sqrt{b}$; d) $a^{-1} = \frac{1}{a}$

2.- Expresa las siguientes potencias en forma de raíz y calcula la raíz (si se puede)

a)
$$121^{\frac{1}{2}}$$

b)
$$(-27)^{\frac{1}{2}}$$

b)
$$(-27)^{\frac{1}{3}}$$
 c) $(0,125)^{\frac{-1}{3}}$

d)
$$\left(\frac{144}{169}\right)^{\frac{1}{2}}$$

e)
$$81^{\frac{3}{4}}$$

$$h)\left(2^{\frac{3}{4}}\right)^{\frac{1}{2}}$$

i)
$$a^{\frac{2}{5}}$$

j)
$$(x+3)^{\frac{3}{4}}$$

3.- Escribe las raíces en forma de potencias:

a)
$$\sqrt{169}$$

b)
$$\sqrt[3]{8}$$

c)
$$\sqrt[3]{0.064}$$

d)
$$\sqrt[5]{32^3}$$

e)
$$\sqrt[7]{4}$$

f)
$$\sqrt[6]{(3x+4)^5}$$
 g) $\sqrt[7]{2x^4}$

g)
$$\sqrt[7]{2x^4}$$

h)
$$\sqrt[n]{b^{x-1}}$$

i)
$$\sqrt[4]{\frac{1}{81}}$$

$$j) \sqrt[m]{a^{x+2}}$$

4.- Simplifica los siguientes radicales:

a)
$$\sqrt{50}$$

b)
$$\sqrt{125}$$

c)
$$\sqrt{98}$$

d)
$$\sqrt[3]{280}$$

e)
$$\sqrt{32}$$

f)
$$\sqrt{72}$$

5.- Simplifica las siguientes expresiones:

a)
$$\sqrt{200x^3}$$

b)
$$\sqrt[5]{81x^9 y^5}$$

c)
$$\sqrt[4]{625a^6c^8}$$

d)
$$\sqrt[3]{8a^6b^3}$$

d)
$$\sqrt[3]{8a^6b^3}$$
 e) $\sqrt{18a^5b^4c^3}$

6.- Introduce en el radical los factores que están fuera:

a)
$$5\sqrt{5}$$

b)
$$4\sqrt[4]{4}$$

c)
$$4\sqrt{2}$$

d)
$$3\sqrt{3}$$

e)
$$4ab\sqrt{3ab}$$

7.- Realiza las siguientes operaciones:

a)
$$\sqrt[3]{16} : \sqrt{2}$$

b)
$$\sqrt{2} \cdot \sqrt[4]{4}$$

a)
$$\sqrt[3]{16} : \sqrt{2}$$
 b) $\sqrt{2} \cdot \sqrt[4]{4}$ c) $\sqrt{3} \cdot \sqrt[3]{3^2} \cdot \sqrt{3}$ d) $\sqrt[3]{x^2} : \sqrt[4]{x^3}$ e) $\frac{4\sqrt[3]{4}}{2\sqrt{2}}$

d)
$$\sqrt[3]{x^2} : \sqrt[4]{x^3}$$

e)
$$\frac{4\sqrt[3]{4}}{2\sqrt{2}}$$

8.- Opera:

a)
$$(\sqrt{2})^3$$

b)
$$(2\sqrt[8]{4})^4$$

c)
$$\left(\sqrt[3]{x^2}\right)^6$$

d)
$$(2\sqrt{3})^4$$

$$e)\left(\sqrt[3]{3}\right)^{6}$$

a)
$$\left(\sqrt{2}\right)^3$$
 b) $\left(2\sqrt[8]{4}\right)^4$ c) $\left(\sqrt[3]{x^2}\right)^6$ d) $\left(2\sqrt{3}\right)^4$ e) $\left(\sqrt[3]{3}\right)^4$ f) $\left(\left(\sqrt{3}\right)^2\right)^2$

9.- Realiza las siguientes operaciones:

a)
$$\sqrt{\sqrt{81}}$$

b)
$$\sqrt[4]{\sqrt{64}}$$

b)
$$\sqrt[4]{\sqrt{64}}$$
 c) $\left(\sqrt[4]{\sqrt{3}}\right)^8$ d) $\left(\sqrt[3]{4}\right)^4$ e) $\sqrt{2} \cdot \sqrt[3]{2} \cdot \sqrt[4]{2}$ f) $\sqrt{2\sqrt{2\sqrt{2}}}$

e)
$$\sqrt{2} \cdot \sqrt[3]{2} \cdot \sqrt[4]{2}$$

f)
$$\sqrt{2\sqrt{2\sqrt{2}}}$$

10.- Calcula:

a)
$$5\sqrt{3} - 2\sqrt{3} + 4\sqrt{3}$$

b)
$$\sqrt{12} - \sqrt{27}$$

c)
$$\sqrt{24} + \sqrt{96} - \sqrt{54}$$

d)
$$2\sqrt{18} - 3\sqrt{98}$$

e)
$$3\sqrt{75} + 2\sqrt{12} - 2\sqrt{3}$$

e)
$$3\sqrt{75} + 2\sqrt{12} - 2\sqrt{3}$$
 f) $2\sqrt{7} - 3\sqrt{28} + \sqrt{63} - 2\sqrt{175}$

g)
$$4\sqrt[3]{54} + 3\sqrt[3]{27}$$

h)
$$\sqrt{1000} - 3\sqrt{10} + 5\sqrt{100000}$$

11.- Racionaliza:

$$a)\,\frac{\sqrt{3}}{\sqrt{5}-\sqrt{2}}$$

$$b)\frac{1}{\sqrt[3]{2}}$$

c)
$$\frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} + \sqrt{2}}$$
 d) $\frac{5\sqrt{3}}{4 + 3\sqrt{2}}$

$$d)\frac{5\sqrt{3}}{4+3\sqrt{2}}$$

$$e)\frac{2+\sqrt{2}}{\sqrt{3}}$$

f)
$$\frac{4}{\sqrt{8}}$$

$$g)\frac{3}{\sqrt[4]{3}}$$

h)
$$\frac{a}{\sqrt[3]{a^2}}$$

Soluciones:

4.- a)
$$5\sqrt{2}$$
; b) $5\sqrt{5}$; c) $7\sqrt{2}$; d) $2\sqrt{35}$; e) $4\sqrt{2}$; f) $6\sqrt{2}$

5.- a)
$$10x\sqrt{2x}$$
; b) $xy = \sqrt[5]{81x^4}$; c) $5ac^2\sqrt{a}$; d) 2^3a^2b ; e) $3a^2b^2c\sqrt{2ac}$

6.- a)
$$\sqrt{125}$$
; b) $\sqrt[4]{4^5}$; c) $\sqrt{32}$; d) $\sqrt{27}$; e) $\sqrt{48a^3b^3}$

7.- a)
$$\sqrt[6]{2^5}$$
; b)2; c) $3\sqrt[3]{3^2}$; d) $\sqrt[12]{x^{-1}} = \frac{1}{\sqrt[12]{x}} = \frac{\sqrt[12]{x^{11}}}{x}$; e) $2\sqrt[6]{2}$

8.- a)
$$2\sqrt{2}$$
; b)32; c) x^4 ; d) $2^4 \cdot 3^2 = 144$; e) $3\sqrt[3]{3}$; f) $3^2 = 9$

9.- a)3; b)
$$\sqrt[4]{2^3}$$
 ; c)3; d) $2\sqrt[3]{2}$; e) $2\sqrt[12]{2}$; f) $\sqrt[8]{2^7}$

10.- a)
$$7\sqrt{3}$$
; b) $-\sqrt{3}$; c) $3\sqrt{6}$; d) $-15\sqrt{2}$; e) $17\sqrt{3}$; f) $-11\sqrt{7}$; g) $12\sqrt[3]{2} + 9$; h) $507\sqrt{10}$

11.- a)
$$\frac{\sqrt{15} + \sqrt{6}}{3}$$
; b) $\frac{\sqrt[3]{2^2}}{2}$; c) $\frac{7 - 2\sqrt{10}}{3}$; d) $-10\sqrt{3} + \frac{15}{2}\sqrt{6}$; e) $\frac{2\sqrt{3} + \sqrt{6}}{3}$, f) $\sqrt{2}$; g) $\sqrt[4]{27}$; h) $\sqrt[3]{a}$

COMPLEMENTARIOS:

1) Calcula:

a)
$$\left(\sqrt[15]{-2+\sqrt{100}}\right)^5 - \left(-1-\sqrt[3]{-27}\right)^2 + \sqrt{\sqrt{\sqrt{256}}}$$

b)
$$\sqrt{6 + 4 \cdot \sqrt{2}} \times \sqrt{6 - 4 \cdot \sqrt{2}}$$

c)
$$\left(\sqrt{7 + 2\sqrt{6}} + \sqrt{7 - 2\sqrt{6}}\right)^2$$

d)
$$\sqrt{\sqrt{25} + \sqrt{121}} - \sqrt[3]{2} - \sqrt[3]{3 \cdot \sqrt{81}} + \sqrt[5]{\sqrt[3]{-8}} \cdot \sqrt{\sqrt{16}} \cdot \sqrt{64}$$

RADICALES(2)

1°.- ¿Son ciertas las siguientes igualdades?

a)
$$\sqrt{16} + \sqrt{9} = \sqrt{25}$$

a)
$$\sqrt{16} + \sqrt{9} = \sqrt{25}$$
 b) $\sqrt{4} + \sqrt{36} = \sqrt{40}$

c)
$$\sqrt{9} \cdot \sqrt{25} = \sqrt{225}$$

d)
$$\sqrt{36} - \sqrt{4} = \sqrt{32}$$

e)
$$\sqrt{100}$$
: $\sqrt{4} = \sqrt{25}$

f)
$$\sqrt{36} : \sqrt{4} = \sqrt{9}$$

2º.- Calcula el valor de "a" para que las siguientes raíces sean exactas:

a)
$$\sqrt{2^3 \cdot 3 \cdot 5^2 \cdot a}$$

b)
$$\sqrt{2 \cdot a \cdot 3^2 \cdot 5^3}$$

c)
$$\sqrt{9 \cdot a \cdot 2 \cdot 5^3}$$

d)
$$\sqrt{a \cdot 3^3 \cdot 5}$$

e)
$$\sqrt{25 \cdot a \cdot 27}$$

f)
$$\sqrt{3.75.a}$$

3°.- Halla el valor de las letras en las siguientes igualdades:

a)
$$\sqrt{a} = 15$$
 b) $\sqrt{2x} = 5$ c) $\sqrt{3a} = 9$

b)
$$\sqrt{2x} = 5$$

c)
$$\sqrt{3a} = 9$$

d)
$$\sqrt{20 x} = 10$$

e)
$$\sqrt{6 \ x} = 12$$

f)
$$\sqrt[3]{2b} = 2$$

e)
$$\sqrt{6 \ x} = 12$$
 f) $\sqrt[3]{2 \ b} = 2$ g) $\sqrt[3]{27 \ a} = 3$ h) $\sqrt[4]{27 \ x} = 3$

h)
$$\sqrt[4]{27 \ x} = 3$$

4°.- Racionaliza las siguientes fracciones:

a)
$$\frac{\sqrt{4} + \sqrt{3}}{\sqrt{4} - \sqrt{3}}$$
 b) $\frac{a}{\sqrt[4]{a^3}}$

b)
$$\frac{a}{\sqrt[4]{a^3}}$$

c)
$$\frac{4\sqrt{6}}{\sqrt{2}}$$

d)
$$\frac{7 - 2\sqrt{3}}{\sqrt{3}}$$

e)
$$\frac{\sqrt[3]{a}}{\sqrt[4]{a}}$$

$$f) \frac{3}{\sqrt{5} + 2}$$

g)
$$\frac{8}{6 - \sqrt{12}}$$

h)
$$\frac{1}{\sqrt{2} - \sqrt{3}}$$

i)
$$\frac{3\sqrt{2}}{\sqrt{2} + \sqrt{3}}$$
 j) $\frac{1 + \sqrt{2}}{1 - \sqrt{2}}$

j)
$$\frac{1 + \sqrt{2}}{1 - \sqrt{2}}$$

k)
$$\frac{\sqrt{2} - \sqrt{3}}{\sqrt{3} + \sqrt{2}}$$
 l) $\frac{\sqrt{a} + \sqrt{c}}{\sqrt{a} - \sqrt{c}}$

$$1) \frac{\sqrt{a} + \sqrt{c}}{\sqrt{a} - \sqrt{c}}$$

5°- Realiza las operaciones que creas convenientes (sumar, multiplicar, dividir, racionalizar, etc...), para simplificar las siguientes expresiones con radicales:

a)
$$\frac{\sqrt{10000} \cdot \sqrt{100} \cdot \sqrt[3]{10^2 \cdot 1000}}{10^2 \cdot \sqrt{100\sqrt{100 \cdot 10^3}} \cdot \sqrt{100}}$$

b)
$$\sqrt{28\sqrt{81\sqrt{256}}}$$

c)
$$\sqrt{9000} + 10\sqrt{10^5} - 3\sqrt{16000} + 4\sqrt{90}$$

d)
$$(3 + 9) \sqrt{5} - \sqrt{125} + \sqrt{5} a^2$$

e)
$$\sqrt{ab} \sqrt{\frac{c}{ab}}$$

f)
$$\sqrt{4a^2b} - \sqrt{9ab^2} + 3\sqrt{a} - 2a\sqrt{b}$$

g)
$$\sqrt{\frac{16}{3}}$$
 - 2 $\sqrt{\frac{4}{3}}$ + 3 $\sqrt{\frac{1}{27}}$ - 2 $\sqrt{\frac{25}{3}}$

h)
$$\sqrt[3]{b} c^2 \sqrt{\frac{a}{c}}$$

i)
$$\sqrt{1 + \sqrt{6 + \sqrt{5 + \sqrt{16}}}}$$

j)
$$\sqrt{\frac{4 a b^2}{c d}} \cdot \sqrt[4]{\frac{b c d^2}{2 a}}$$

k)
$$(2 \sqrt{8} + 3) \cdot (3 \sqrt{2} - 1)$$

1)
$$\sqrt{a \ b \ c^3}$$
 . $\sqrt[3]{\frac{a^2 \ c}{b}}$. $\sqrt[6]{\frac{a \ b}{c^3}}$

$$m)\frac{a^{\frac{2}{3}} \cdot a^{\frac{1}{2}}}{\sqrt[3]{a} \cdot \sqrt{a}}$$

n)
$$\sqrt{\frac{8}{9}}$$
 - 3 $\sqrt{\frac{2}{9}}$ - 2 $\sqrt{\frac{2}{16}}$ + $\sqrt{32}$

o)
$$\left(\sqrt[3]{a^2 \ b \sqrt[4]{a^3 \ b^5}} \right)^2$$

p)
$$\frac{\sqrt{2 \ a \ b} \ . \sqrt[3]{2 \ a^2 \ b}}{\sqrt[6]{2 \ a \ b}}$$

q)
$$\sqrt[3]{8} \ a \ \sqrt{a^4 \ b^3}$$

r)
$$\left(\sqrt{2} + \sqrt{8}\right)$$
. $\left(2\sqrt{2} - \sqrt{8}\right)$

s)
$$\left(2\sqrt[3]{a^2 b c^3}\right)^2$$

t)
$$\sqrt[3]{\frac{\sqrt{x^6 \ a^2}}{\sqrt[3]{b^9 \ c^3}}}$$

6°.- De las siguientes igualdades corrige las que no sean verdaderas:

$$a)\sqrt{a^2+b^2}=a+b$$

b)
$$\sqrt{(a+b)^2} = a+b$$

a)
$$\sqrt{a^2 + b^2} = a + b$$
 b) $\sqrt{(a + b)^2} = a + b$ c) $\sqrt{a + b} = \sqrt{a} + \sqrt{b}$ d) $\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$

d)
$$\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$$

7°.-¿Cuánto vale: a)
$$\left[\left(\left(0'01\right)^{-1/2}\right)^{2/3}\right]^{3/4}$$
; b) $\sqrt[3]{\frac{\left(0'004\right)^4\left(0'0036\right)}{\left(120.000\right)^2}}$; c) $\frac{10^{x+y}\cdot10^{y-x}\cdot10^{y+1}}{10^{y+1}\cdot10^{1+2y}}$?

Soluciones:

1°: c) e) f) sí

2°: a) a=6; b) a=10; c) a=10; d) a=15; e) a=3; f) a=1

3°: a) a=225; b) x=25/2; c) a=27; d) x=5; e) x=24; f) b=4; g) a=1; h) x=3

4°: a)
$$7 + 2\sqrt{12}$$
; b) $\sqrt[4]{a}$; c) $4\sqrt{3}$; d) $\frac{7\sqrt{3} - 6}{3}$; e) $\sqrt[12]{a}$; f) $3\sqrt{5} - 6$; g) $\frac{6 + 2\sqrt{3}}{3}$; h) $-\sqrt{2} - \sqrt{3}$

i)
$$3\sqrt{6} - 6$$
; j) $-3 - 2\sqrt{2}$; k) $2\sqrt{6} - 5$ l) $\frac{a + c + 2\sqrt{ac}}{a - c}$

5°: a)
$$\frac{1}{\sqrt[12]{10}}$$
; b) $12\sqrt{7}$; c) $922\sqrt{10}$; d) $(7+a)\sqrt{5}$; e) $\sqrt[4]{a \ b \ c}$; f) $(3-3b)\sqrt{a}$; g) $-9\sqrt{\frac{1}{3}}$; h) $\sqrt[6]{b^2 \ c^3 \ a}$; i) 2

j)
$$\sqrt[4]{\frac{8 \ a \ b^5}{c}}$$
; k) $21 + 5 \ \sqrt{2}$; l) $\sqrt[3]{a^4 \ b \ c^4}$; m) $\sqrt[3]{a}$; n) $\frac{19}{6} \ \sqrt{2}$; o) $a \ b \ \sqrt[6]{a^5 \ b^3}$; p) $\sqrt[3]{2^2 \ a^3 \ b^2}$; q) $2 \ a \ \sqrt{b}$

r) 0; s)
$$2^2 \ a \ c^2 \sqrt[3]{a \ b^2}$$
; t) $\frac{x}{b} \sqrt[3]{\frac{a}{c}}$

COMPLEMENTARIO:

Calcula:

$$\sqrt{\frac{\left(-2\right)^{3} \cdot \left(\frac{1}{3}\right)^{-3} \cdot \left(-\frac{2}{3}\right)}{\frac{-2 - \frac{1}{2} + \frac{1}{3}}{-\frac{1}{3} + \frac{5}{2}} + 1 - \frac{6}{5}} - \frac{\sqrt[3]{\frac{16 \cdot \left(\frac{1}{2}\right)^{-3}}{\frac{1}{2} - 1 + \left(-1\right)^{3} \cdot \left(\frac{2}{3}\right)^{-1}}}{\frac{1}{2} - 1 + \left(-1\right)^{3} \cdot \left(\frac{2}{3}\right)^{-1}}$$

Sol: -2